A simple example of modeling hybrid systems using bialgebras: preliminary version R. L. Grossman R. G. Larson December, 1991 # Hybrid systems Let Σ be a finite alphabet, and let $W = \Sigma^*$ be the set of strings of letters of Σ . W is a semigroup with identity. A finite automaton over Σ is a finite set S of states together with a transition map $\delta: \Sigma \times S \to S$ and an initial state $s_0 \in S$. The transition map δ can be extended to a map $\delta: W \times S \to S$. If $s \in S$ and $w \in W$ we denote $\delta(w,s)$ by $w \cdot s$. Let k be an algebraically closed field of characteristic 0. Suppose that for each $s \in S$ we have a pointed irreducible cocommutative k-bialgebra H_s with counit $\epsilon_s: H_s \to k$ and unit $\eta_s: k \to H_s$, an augmented commutative right H_s -module algebra R_s , and an observation $f_s \in R_s$. In this case $H_s \cong U(L_s)$ for some Lie algebra L_s acting as derivations of R_s , and $p_s \in H_s^*$ defined by $p_s(h) = \epsilon_s(f_s \cdot h)$ for $h \in H_s$ is differentially produced by R_s . (See [1] for a realization theorem for such control systems.) The triple (H_s, R_s, f_s) represents a continuous control system. We describe how the data given above can be used to construct a hybrid control system. Let $H_0 = \coprod_{s \in S} H_s$, the free product of the H_s . Then H_0 is a pointed irreducible bialgebra, since it is generated as an algebra by the primitive elements of the H_s . Let $R = \bigoplus_{s \in S} R_s$. Then R is a commutative k-algebra and a right H-module algebra as follows: the maps $H_0 \to H_s$ induced by the maps $\phi_{s',s}: H_{s'} \to H_s$ given by $$\phi_{s',s} = \begin{cases} \text{id} & \text{if } s' = s \\ \eta_s \circ \epsilon_{s'} & \text{if } s' \neq s \end{cases}$$ induces a bialgebra homomorphism $H_0 \to H_s$. Pullback along this map makes R_s into a right H_0 -module algebra. In concrete terms, H_0 is the algebra freely generated by the elements of the Lie algebras L_s , subject to the relations which hold in L_s , and the elements of $L_{s'}$, for $s' \neq s$, act trivially on R_s . We make R into a right H_0 -module algebra by allowing H_0 to act component-wise on $R = \bigoplus_{s \in S} R_s$. Denote the action of H_0 on R by $r \cdot h = rA(h)$. Define the augmentation on R by $\alpha = \alpha_{s_0} \oplus 0 \oplus \cdots \oplus 0$, where α_{s_0} is the augmentation on R_{s_0} , and define the observation $f = \sum_{s \in S} f_s$. Suppose that for each $a \in \Sigma$ and $s \in S$ we are given a bialgebra homomorphism $T_{a,s}: H_s \to H_{a\cdot s}$. Since W is freely generated by Σ , this gives a bialgebra homomorphism $T_{w,s}: H_s \to H_{w\cdot s}$ for each $s \in S$ and $w \in W$. The homomorphisms $H_s \to H_{w\cdot s} \to H_0$ induce a bialgebra endomorphism $H_0 \to H_0$. This gives a semigroup homomorphism $T: W \to \operatorname{End}_{\operatorname{bialg}} H_0$. Define the bialgebra $$H = H_0 \sharp_T kW$$. See [2] or [3] for a detailed definition of the semidirect product # of a bialgebra by a semigroup algebra; the multiplication is given by $$(h \sharp w)(h' \sharp w') = h(h'T(w)) \sharp ww'.$$ Suppose that for each $a \in \Sigma$ we are given an algebra homomorphism $R \to R$ mapping $r \mapsto rQ(a)$ such that $R_sQ(a) \subseteq \sum_{a\cdot t=s} R_t$, and $\alpha_t \circ p_t(1_sQ(a)) = 1$, where 1_s is the identity of R_s , $p_t: R \to R_t$ is the projection of R onto R_t , and α_t is the augmentation of R_t , whenever $a \cdot s = t$. (These conditions say that the action of Σ on R reflects the action of Σ on the automaton S.) Since W is freely generated by Σ , this gives a semigroup homomorphism $Q: W \to \operatorname{End}_{\operatorname{alg}} R$ such that $$R_s Q(w) \subseteq \sum_{w \cdot t = s} R_t \tag{1}$$ for all $s \in S$ and $w \in W$, and $$\alpha_t \circ p_t(1_s Q(w)) = 1, \tag{2}$$ whenever $w \cdot s = t$. Assume that A, Q, and T satisfy the following compatibility condition. $$Q(w)A(h) = A(T(w)h)Q(w)$$ (3) for all $h \in H_0$ and $w \in W$. Then defining $$r \cdot (h \sharp w) = rA(h)Q(w)$$ for all $r \in R$, $h \in H_0$, and $w \in W$ gives R a right H-module structure. To see that R is a right H-module, we compute $$(r \cdot (h \sharp w)) \cdot (h' \sharp w') = rA(h)Q(w) \cdot (h' \sharp w')$$ $$= rA(h)Q(w)A(h')Q(w')$$ $$= rA(h)A(T(w)h')Q(w)Q(w')$$ $$= rA(hT(w)h')Q(ww')$$ $$= r \cdot (hT(w)h' \sharp ww')$$ $$= r \cdot ((h \sharp w)(h' \sharp w')),$$ for all $r \in R$, $h, h' \in H_0$, and $w, w' \in W$. That R is an H-module algebra follows from the facts that R is an H_0 -module algebra and that Q maps W to the semigroup of algebra endomorphisms of R. The element $p \in H^*$ defined by $p(h) = \epsilon(f \cdot h)$ for $h \in H$ is the generating series associated with the dynamical system (H, R, f). ## Some examples In this section we give some examples showing how traditional dynamical systems fit into our scheme, and give an example of a simple hybrid system. ## Example — continuous systems Let $\Sigma = \emptyset$ and $S = \{s_0\}$. We then get a continuous dynamical system as described in [1]. ### Example — discrete systems Let S be a finite automaton over the alphabet Σ , let $\delta: \Sigma \times S \to S$ its transition function, $s_0 \in S$ its initial state, and let $F \subseteq S$ a set of accepting states. Let $R_s = H_s = k$ for all $s \in S$, and let $$f_s = \begin{cases} 1 & \text{if } s \in F \\ 0 & \text{if } s \notin F. \end{cases}$$ Then $H_0 = k$, the homomorphism $T(w) : H_0 \to H_0$ is the identity for all $w \in W$, $R = k^S$ the algebra of functions from S to k, and A(h) is scalar multiplication of $h \in H_0 = k$ on R. The semigroup W acts on the set S, so it acts on R via the transpose of the action on S: if $r \in R$, then $rQ(w)(s) = r(w \cdot s)$. Viewing R as the algebra of functions from S to k, the observation $f \in R$ is simply the characteristic function of the set of accepting states. It is easily checked that conditions (1), (2), and (3) are satisfied. If $L \subseteq W$ is the language accepted by the automaton S, then $w \in L$ if and only if $w \cdot s_0 \in F$ if and only if $f(w \cdot s_0) = 1$ if and only if $p(w) = \epsilon(f \cdot w) = 1$. Therefore the generating series p in this case is the characteristic function of the language accepted by the automaton S. ### Example — a simple hybrid system Let $S = \{s_1, s_2\}$ with initial state $s_1, \Sigma = \{a_1, a_2\}$ with action of Σ on S given by $a_i \cdot s_j = s_i$, and let $R_{s_i} = k[X_1, \ldots, X_N]$, and $H_{s_i} = k < E_{i1}, E_{i2} >$, where E_{ij} act as derivations on R_{s_i} . For simplicity we write R_i for R_{s_i} and H_i for H_{s_i} . Note that $H_0 = k < E_{11}, E_{12}, E_{21}, E_{22} >$, and that $R = k[X_1, \ldots, X_N] \oplus k[X_1, \ldots, X_N]$. Let $\alpha_i : R_i \to k$ be the augmentation mapping $p \mapsto p(0)$. Denote $\hat{1} = 2$ and $\hat{2} = 1$. The map $T(a_i): H_0 \to H_0$ is induced by the homomorphism $$\begin{array}{ccc} E_{ij} & \mapsto & E_{ij} \\ E_{ij} & \mapsto & 0 \end{array}$$ The map $Q(a_i): R \to R$ is defined as follows. Recall that $R_i \cong R_j$ (in fact they are equal); let $\rho_{ij}: R_i \to R_j$ be this isomorphism. Then $$Q(a_i)(r) = \begin{cases} \rho_{ii}(r) \oplus \alpha_i(\rho_{ii}(r)) 1_i & \text{if } r \in R_i \\ 0 & \text{if } r \in R_i. \end{cases}$$ It is easily checked that conditions (1), (2), and (3) are satisfied. # The correspondence between the Heisenberg representation and the state space representation In this section we describe the correspondence between the representation of a dynamical system using a bialgebra H and an H-module algebra R (the Heisenberg representation), and the representation of a dynamical system using (in the continuous case) the state space $V \cong \mathbb{R}^N$ and a differential operator on the algebra of polynomial functions R on V, or (in the discrete case) the finite state space S and a semigroup W of words acting on S (the state space representation). ### References - [1] R. Grossman and R. G. Larson, The realization of input-output maps using bialgebras, Forum Math., to appear. - [2] R. G. Larson, Cocommutative Hopf algebras, Canad. J. Math. 19 (1967), 350-360. - [3] M. E. Sweedler, Hopf algebras, W. A. Benjamin, New York, 1969.